Taut ideal triangulations of 3–manifolds
نویسنده
چکیده
A taut ideal triangulation of a 3–manifold is a topological ideal triangulation with extra combinatorial structure: a choice of transverse orientation on each ideal 2–simplex, satisfying two simple conditions. The aim of this paper is to demonstrate that taut ideal triangulations are very common, and that their behaviour is very similar to that of a taut foliation. For example, by studying normal surfaces in taut ideal triangulations, we give a new proof of Gabai’s result that the singular genus of a knot in the 3–sphere is equal to its genus. AMS Classification numbers Primary: 57N10
منابع مشابه
The complexity of detecting taut angle structures on triangulations
There are many fundamental algorithmic problems on triangulated 3-manifolds whose complexities are unknown. Here we study the problem of finding a taut angle structure on a 3-manifold triangulation, whose existence has implications for both the geometry and combinatorics of the triangulation. We prove that detecting taut angle structures is NP-complete, but also fixed-parameter tractable in the...
متن کاملIdeal triangulations of finite volume hyperbolic 3-manifolds
Any non compact finite volume hyperbolic 3-manifold has a finite cover which admits a nondegenerate ideal triangulation. As an application, we show that the volume of those manifolds is always a critical value of a function defined from the Lobachevskii function.
متن کاملCourcelle's theorem for triangulations
In graph theory, Courcelle’s theorem essentially states that, if an algorithmic problem can be formulated in monadic second-order logic, then it can be solved in linear time for graphs of bounded treewidth. We prove such a metatheorem for a general class of triangulations of arbitrary fixed dimension d, including all triangulated d-manifolds: if an algorithmic problem can be expressed in monadi...
متن کاملThe cusped hyperbolic census is complete
From its creation in 1989 through subsequent extensions, the widely-used “SnapPea census” now aims to represent all cusped finite-volume hyperbolic 3-manifolds that can be obtained from ≤ 8 ideal tetrahedra. Its construction, however, has relied on inexact computations and some unproven (though reasonable) assumptions, and so its completeness was never guaranteed. For the first time, we prove h...
متن کامل0-efficient Triangulations of 3-manifolds
0-efficient triangulations of 3-manifolds are defined and studied. It is shown that any triangulation of a closed, orientable, irreducible 3-manifold M can be modified to a 0-efficient triangulation orM can be shown to be one of the manifolds S3,RP3 or L(3, 1). Similarly, any triangulation of a compact, orientable, irreducible, ∂-irreducible 3-manifold can be modified to a 0-efficient triangula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000